Non-haloganated BT Materials

substitution of an inorganic filler as the flame retardant, has the additional benefits of improving the small hole CO2 laser drilling properties, and lowering the CTE. **Copper Clad Laminates Prepregs CCL Thickness** Prepreg Thickness

flammability rating of UL94V-0 without using halogens, antimony, or phosphorus compound. The

These are halogen free materials for PWB use. The halogen free materials achieve a

CCL-HL832NX type A Series	GHPL-830NX type A Series	0.03, 0.04, 0.05, 0.06, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8	0.02 ~ 0.1
Features			
CCL-HL832NX Type A	/ GHPL-830NX Type A	A is a halogen free BT mate	erial for IC plastic

These are suitable for lead-free reflow process, because of good heat resistance, high stiffness,

and low CTE.

These have been used for various applications as the de facto standard of halogen free materials for IC plastic packages. CSP, BGA, Flip Chip Package, SiP, Module, etc.

Non-haloganated Low CTE BT Materials

0.15, 0.2, 0.25, 0.3, 0.4

Prepreg Thickness

Prepreg Thickness

 $0.02 \sim 0.045$

 $0.02 \sim 0.08$

 $0.015 \sim 0.1$

 $0.015 \sim 0.1$

Prepreg Thickness

Prepreg Thickness

Prepreg Thickness

 $0.02 \sim 0.1$

 $0.025 \sim 0.1$

 $0.025 \sim 0.1$

HL832NS

type LC

4.0

3.9

3.9

0.006

0.007

0.008

1015-16

1015-16

1016-17

750

30

400

30

255

230

7

3

1.0

V-0

1.9

0.95

0.30

HL832NSR

4.5

4.4

4.4

0.008

0.011

0.012

1015-16

1015-16

1016-17

550

30

280

30

230

210

8

3

1.0

V-0

2.0

0.95

0.7

0.32

 $0.015 \sim 0.08$

 $0.015 \sim 0.08$

 $0.015 \sim 0.1$

 $0.015 \sim 0.1$

Series

type LC Series

Low CTE and low shrinkage which are effective to reduce the warpage of substrate for IC

Low CTE glass is applied to HL832NS type LC and it achieves lower CTE and high stiffness.
Typical applications
These have been used for various applications as the de facto standard of low CTE, halogen free materials for IC plastic packages. CSP, BGA, Flip Chip Package, Coreless, SiP, Module, etc.

Application Processor, Baseband, PMIC, DRAM, Flash Memory, PA, RF Module, ECU for

Features Ultra low CTE and low shrinkage which are effective to reduce the warpage of substrate for IC

Suitable for coreless process, because of low resin shrinkage of prepregs.

CCL Thickness

0.03,0.04,0.05,0.06,0.1,0.15,

0.03, 0.04, 0.05, 0.06, 0.1,

0.15, 0.2, 0.25, 0.3, 0.4

0.2,0.25,0.3,0.4

Adoption exampl	es		
Application Processor,	, Mobile DRAM, RF Mo	dule, etc.	
Copper Clad Laminates	Prepregs	CCL Thickness	Prepreg Thickness

0.03, 0.04, 0.05, 0.06, 0.08,

0.1, 0.15, 0.2, 0.25, 0.3, 0.4

0.03, 0.04, 0.05, 0.06, 0.1,

0.15, 0.2, 0.25, 0.4

These have been used for various applications, mainly Flip Chip Package, because of their super

CCL-832NSF

type LC Series

CCL-HL832NSF

Series

Features

for IC package.

CCL-HL832NSA GHPL-830NSA $0.04 \sim 0.4$ $0.025 \sim 0.08$ type LC Series type LC Series

CCL Thickness

CCL Thickness

CCL Thickness

 $0.04 \sim 0.8$

 $0.04 \sim 0.5$

 $0.04 \sim 0.5$

Show stress relaxation performance during coreless process, and also have low CTE and low

Application Processor, Baseband, GPU, DRAM, Flash Memory, ECU for Automotive, Various

Suitable for the applications which requires high heat resistance such as automotive use. Flip Chip Package, Coreless, CSP, BGA, SiP, Module, etc.

Adoption examples

Copper Clad Laminates

Typical applications

Copper Clad Laminates

Features

shrinkage.

Flip Chip Package, CSP, BGA, etc.

ultra low CTE, high Tg, high stiffness.

Sensor (Fingerprint, CMOS), LED, etc.

Features These are the latest materials for low CTE, low shrinkage, and high Tg.

Effective to reduce the warpage of substrate for IC package.

Prepregs

Low Transmission Loss, Low CTE, Non-halogenated BT Laminates

Prepregs

GHPL-970LF

type LD Series

GHPL-970LFG

type LD Series

GHPL-970LFG CCL-HL972LFG Series Series

1GHz Dielectric

Item

Constant

Insulation

Resistance

Resistance

Surface

Volume

Flexural

Strength

Flexural

Modulus

Cofficent of

Thermal

Specific

absorption

heat

Expansion

Resistivity

Features

shrinkage.

Typical applications

Measuring equipments, etc.

Low transmission loss materials for high frequency, high speed signal use. Achieved low Dk and low Df, as well as keeping high heat resistance, low CTE, low shrinkage, and high peel strength with copper, equivalent to conventional BT laminates. PCB makers can apply the same manufacturing process as conventinal BT laminates. Suitable for multi-layers and coreless process, because of excellent formability and low

Low profile copper foils, which is effective to decrease transmission loss, can be applied,

RF module for 5G smartphone, Base station (Antenna module for small cell, Power amplifier

HL832NX

(A)

4.9

4.8

4.7

0.011

0.011

0.012

1015-16

1015-16

1015-16

450

28

200

14

5

1.00

0.44

Ω

Ω

Ω·cm

MPa

GPa

°С

ppm/°C

ppm/°C

HL832NS

4.4

4.3

4.3

0.006

0.008

0.008

1015-16

1015-16

1016-17

490

27

290

27

255

230

10

3

1.0

V-0

1.9

1.00

0.31

board), Millimeter-wave radar, Optical transmission module for data center and HPC,

Unit

because of high peel strength with copper as well as low Dk and Df properties.

Dissipation 5GHz **Factor**

Young's Modulus		GPa	28
Glass Transition Temp.	DMA	°C	230
	TNAA	00	200

α1

α2

°C/85RH%

168h

TMA

X,Y

X,Y

Peel Strength	12µm	KN/m	0.85
Flame Resistance	E-168/70	-	V-0

Thermal W/m*K 0.6 8.0 0.6 Conductivity Poissin's 0.19 0.18 0.18 0.18 ratio 85 Moisture

J/kg·K

%

Typical applications

Copper Clad Laminates CCL Thickness **Prepregs** 0.03, 0.04, 0.05, 0.06, 0.1, CCL-832NS GHPL-830NS 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, Series 0.6, 0.7, 0.8 GHPL-830NS CCL-832NS 0.03, 0.04, 0.05, 0.06, 0.1,

type LC Series

Features

package. Show superior heat resistance after moisture absorption because of low moisture absorption. Suitable for coreless process, because of low resin shrinkage of prepregs. 30um copper clad laminate and 15um prepreg are available.

Automotive, Various Sensor (MEMS, Optical, Fingerprint), etc.

Prepregs

typeLC Series

GHPL-830NSR

Series

Coreless, SiP, Module, CSP, BGA, Flip Chip Package, etc.

GHPL-830NSF

type LC Series

GHPL-830NSF

Series

Copper Clad Laminates CCL-832NSR GHPL-830NSR

Typical applications

type LC Series

CCL-HL832NSR

Series

package.

Adoption examples

High glass transition temperature	
High stiffness	
Suitable for coreless process, because of low resin shrinkage of prepregs.	
Typical applications	

Supre ultra low CTE and low shrinkage which are effective to reduce the warpage of substrate

Adoption examples Application Processor, GPU, etc.

Prepregs

Effective to reduce the warpage of coreless substrate for IC package.

GHPL-830SR

type LC Series

GHPL-830SR

Series

These materials focus on coreless process.

Coreless, CSP, BGA, Flip Chip Package, etc.

Application Processor, Mobile DRAM, etc.

Suitable for Flip Chip package, because of low CTE, high Tg performance.

Copper Clad Laminates

CCL-HL972LF

type LD Series

CCL-HL972LFG

type LD Series

Typical applications

Adoption examples

Typical properties of Materials

Measurement

Method

5GHz

10GHz

1GHz

10GHz

C-

96/20/65

C-

96/20/65

C-

96/20/65

High frequency, High speed signal devices.

Adoption/Evaluation examples

SiP, Module, CSP, BGA, Flip Chip Package, Coreless, etc.

Tensile 270 MPa Strength

Peel Strength	12µm	KN/m	0.85
Flame Resistance	E-168/70	-	V-0
Density		g/cm ³	2.1

Typical properties of Materials										
Item		irement thod	Unit	HL832N type L0		HL832	NSF		32NSF eLCA	HL832 NSA typeLCA
		1GHz	-	4.1		4.4	ļ	4	.0	4.0
Dielectric Constant		5GHz	-	4.0		4.4	ļ	4	.0	4.0
		10GHz	-	4.0		4.3	}	3	.9	3.9
		1GHz	-	0.008	<u> </u>	0.00)6	0.0	006	0.005
Dissipation Factor		5GHz	-	0.011		0.00)8	0.0	008	0.007
ruotoi		10GHz	-	0.012	<u> </u>	0.00)8	0.0	008	0.007
Insulation Resistance		C- 96/20/65	Ω	10 ¹⁵⁻¹	6	10 ¹⁵	-16	10 ¹	5-16	10 ¹⁵⁻¹⁶
Surface Resistance		C- 96/20/65	Ω	10 ¹⁵⁻¹	6	10 ¹⁵	-16	10 ¹	5-16	10 ¹⁵⁻¹⁶
Volume Resistivity		C- 96/20/65	Ω·cm	10 ¹⁶⁻¹	7	10 ¹⁶	-17	10 ¹	6-17	10 ¹⁶⁻¹⁷
Flexural Strength		70,20,00	MPa	670		510)	6	00	420
Flexural Modulus			GPa	33		32		3	34	31
Tensile Strength			MPa	420		290)	3	90	350
Young's Modulus			GPa	33		32		3	34	31
Glass	DMA		°C	230		300)	3	00	>350
Transition Temp.	TMA		°C	210		270)	2	70	270
Cofficent of	X,Y	α1	ppm/ °C	4.5		5			3	1
Thermal Expansion	X,Y	α2	ppm/ °C	2		3			2	0.5
Peel Strength		12µm	KN/m	1.0		0.8		0	.8	0.6
Flame Resistance		E-168/70	-	V-0		V-()	V	/-0	V-0
Density			g/cm ³	2.0		2.0)	2	0	2.0
Specific heat			J/kg·K	0.95		0.9)	0	.9	0.9
Thermal Conductivity			W/m*K	0.7		0.7	,	0	.7	0.7
Poissin's ratio			-	0.18		0.1	9	0.	18	0.15
Moisture absorption		85 °C/85RH%	%	0.32		0.3	5	0.	35	0.39
		168h								
Гурісаl prope	erties of Ma	iterials			ı					
Item		rement thod	Unit	HL972LF typeLD	HL9	72LFG		72LFG peLD	GHPL- 830SR	8305
		1GHz	-	3.5		4.0	3	3.5	3.9	3.7
Dielectric Constant		5GHz	-	3.5		3.9	3	3.5	3.8	3.6
		10GHz	-	3.4		3.8	3	3.4	3.7	3.5
		1GHz	-	0.003	0	.003	0.	002	0.009	0.009
Dissipation Factor		5GHz	-	0.004	0	.004	0.	002	0.01	0.01
		10GHz	-	0.004	0	.004	0.	002	0.011	0.011
Insulation Resistance		C- 96/20/65	Ω	10 ¹⁵⁻¹⁶	10	15-16	10	15-16	10 ¹⁵⁻¹⁶	10 ¹⁵
Surface Resistance		C- 96/20/65	Ω	10 ¹⁵⁻¹⁶	10	15-16	10	15-16	10 ¹⁵⁻¹⁶	10 ¹⁵
Volume Resistivity		C- 96/20/65	Ω·cm	10 ¹⁶⁻¹⁷	10	16-17	10	16-17	10 ¹⁶⁻¹⁷	10 ¹⁶ 17
Flexural Strength			MPa	370	4	450	4	140	420	490
Flexural Modulus			GPa	25		23	,	21	21	22
Tensile Strength			MPa	220	2	210	2	210	290	300
Young's Modulus			GPa	25		23	,	21	21	22
Glass Transition	DMA		°C	270	2	215	2	215	195	195
Temp.	ТМА		°C	240	2	200	2	200	160	160
Cofficent of Thermal	X,Y	α1	ppm/ °C	10		11		10	8.3	6.3
Expansion	X,Y	α2	ppm/ °C	4		4		4	3	2
Peel Strength		12µm	KN/m	0.7		0.7	(0.7	1.0	1.0
					I					

V-0

rating

1.8

0.95

0.6

0.27

V-0

1.9

0.9

0.6

0.35

g/cm³

J/kg·K

W/m*K

%

V-0

rating

1.8

0.95

0.6

0.27

Flame

Density

Specific

Thermal

Poissin's

Moisture

absorption

ratio

2558

Conductivity

heat

Resistance

Specialty Chemicals Business Sector **Electronics Materials Division** TEL: +81-3-3283-4740 / FAX: +81-3-3215-

E-168/70

85

°C/85RH%

168h

V-0

rating

1.8

0.9

0.7

0.21

0.25

V-0

rating

1.8

0.9

0.7

0.25

^{0.2} 0.21

[™]MGC also has halogen free materials, CCL-HL820 and CCL-HL820WDI. *1: Please refer to URL on the right, regarding UL certification of flame resistance.[UL Certification] 💻 *2: Typical properties of 45um prepreg.

Inquiries Concerning Products